SATB2 Is a Multifunctional Determinant of Craniofacial Patterning and Osteoblast Differentiation
نویسندگان
چکیده
Vertebrate skeletogenesis involves two processes, skeletal patterning and osteoblast differentiation. Here, we show that Satb2, encoding a nuclear matrix protein, is expressed in branchial arches and in cells of the osteoblast lineage. Satb2-/- mice exhibit both craniofacial abnormalities that resemble those observed in humans carrying a translocation in SATB2 and defects in osteoblast differentiation and function. Multiple osteoblast-specific genes were identified as targets positively regulated by SATB2. In addition, SATB2 was found to repress the expression of several Hox genes including Hoxa2, an inhibitor of bone formation and regulator of branchial arch patterning. Molecular analysis revealed that SATB2 directly interacts with and enhances the activity of both Runx2 and ATF4, transcription factors that regulate osteoblast differentiation. This synergy was genetically confirmed by bone formation defects in Satb2/Runx2 and Satb2/Atf4 double heterozygous mice. Thus, SATB2 acts as a molecular node in a transcriptional network regulating skeletal development and osteoblast differentiation.
منابع مشابه
Expression and localization of special AT-rich sequence binding protein 2 in murine molar development and the pulp-dentin complex of human healthy teeth and teeth with pulpitis
Special AT-rich sequence binding protein 2 (SATB2) is a member of the special family of AT-rich binding transcription factors and has a critical role in osteoblast differentiation and craniofacial patterning. However, the expression and distribution of SATB2 in tooth development is largely unknown. The aim of the present study was to detect the expression and distribution of SATB2 during murine...
متن کاملmiR-34s inhibit osteoblast proliferation and differentiation in the mouse by targeting SATB2
A screen of microRNAs preferentially expressed in osteoblasts identified members of the miR-34 family as regulators of osteoblast proliferation and/or differentiation. Osteoblast-specific gain- and loss-of-function experiments performed in vivo revealed that miR-34b and -c affected skeletogenesis during embryonic development, as well as bone mass accrual after birth, through two complementary c...
متن کاملBone Formation: The Nuclear Matrix Reloaded
In this issue of Cell, Grosschedl and colleagues (Dobreva et al., 2006) report that the nuclear matrix protein Satb2 represses Hoxa2 expression and acts with other regulatory proteins to promote osteoblast differentiation. This work suggests a molecular mechanism that enables the integration of patterning and differentiation during bone formation.
متن کاملTNF-α inhibits SATB2 expression and osteoblast differentiation through NF-κB and MAPK pathways
Although the mechanisms of Tumor necrosis factor alpha (TNF-α) on facilitating osteoclast differentiation and bone resorption is well known, the mechanisms behind the suppression of the osteoblast differentiation from mesenchymal stem cells (MSCs) are still poorly understood. In this study, we observed a negative correlation between TNF-α levels and the expression of special AT-rich sequence-bi...
متن کاملA network connecting Runx2, SATB2, and the miR-23a~27a~24-2 cluster regulates the osteoblast differentiation program.
Induced osteogenesis includes a program of microRNAs (miRs) to repress the translation of genes that act as inhibitors of bone formation. How expression of bone-related miRs is regulated remains a compelling question. Here we report that Runx2, a transcription factor essential for osteoblastogenesis, negatively regulates expression of the miR cluster 23a∼27a∼24-2. Overexpression, reporter, and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 125 شماره
صفحات -
تاریخ انتشار 2006